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Abstract

In this paper, we propose a numerical scheme for the identification of piecewise constant conductivity coefficient for

a problem arising from electrical impedance tomography. The key feature of the scheme is the use of level set method

for the representation of interface between domains with different values of coefficients. Numerical tests show that our

method can recover sharp interfaces and can tolerate a relatively high level of noise in the observation data. Results

concerning the effects of number of measurements, noise level in the data as well as the regularization parameters

on the accuracy of the scheme are also given.

� 2004 Published by Elsevier Inc.
1. Introduction

Electrical impedance tomography is a widely investigated problem with many applications in physical

and biological sciences. It is well known that the inverse problem is nonlinear and highly ill-posed. Various

numerical techniques with different advantages have been proposed to solve the problem. We begin by first

giving a precise mathematical model for electrical impedance tomography. Let X be a bounded domain in

R2 with C1 boundary oX having outward normal n. We assume X contains material with electrical conduc-

tivity q(x) satisfying q(x)P q0 > 0. Then, the electrical potential u(x) inside X satisfies
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where f(x) is the applied current density on oX such that the following conservation of charge relation

holds:
Z
oX

f ðsÞ ds ¼ 0:
The problem of electrical impedance tomography is to determine the electrical conductivity q(x) inside X
using a set of given values of applied current density f(x) on oX and the corresponding observed values

of electrical potential u(x) on oX. Such a mathematical model is obtained from Maxwell�s equation under

some conditions. See [10,32,35] for some more details about the derivation of the above model.

There are many efficient numerical techniques for solving the inverse problem, see [16,18–

20,23,24,33,37,38]. For instance, in [11], a method called NOSER was proposed. The idea is to minimize
the L2-norm of the difference between the electrical potential due to the applied current and the measured

potential on oX. A one step Newton�s method, with constant conductivity as initial guess, is employed to

solve the minimization problem. The advantage is that most of the calculations, including the gradient of

the functional to be minimized, can be done analytically. For other numerical approaches, we would like to

mention some two-dimensional results for real data of Siltanen et al. [33]. These results showed the possi-

bility of using electrical impedance tomography for real applications. For two-phase problems, the mono-

tonicity method of [37,38] seems to be rather efficient and accurate. For a survey on these methods, see

[10,25]. A problem that is related to electrical impedance tomography and is commonly solved in geophys-
ics is called DC resistivity inverse problem. The only difference between the DC resistivity and the imped-

ance tomography is that the data in DC resistivity are collected only on part of the boundary of the domain.

Some reference of interest are [12,21,26,34]. To some extent, the DC resistivity is a relatively mature area

and that unlike impedance tomography it is used on a daily basis for the detection of minerals and contam-

inated cites.

Brühl and Hanke [4] proposed a method based on an explicit criterion of whether a point is lying

inside or outside of a certain set to solve the impedance tomography. Thus, a region with certain con-

ductivity value can be reconstructed by testing every point in the computational domain. There is no
need to minimize any functional, which means that there is no need to solve the forward problem

numerically, as is normally required to perform many times when computing the gradient of the corre-

sponding functional. Results of their experiments show that the method produces reasonably accuracy in

most cases for noise level up to 1%. A theoretical justification of the numerical scheme has been given in

[3].

Recently, the Mumford–Shah functional, which is a popular tool in image processing, was extended to

the electrical impedance tomography problem in [31]. In addition to minimizing the L2-norm of the differ-

ence between the potential due to the applied current and the measured potential, the L2-norm of the gra-
dient of the conductivity outside a discontinuity set and the Hausdorff measure of the discontinuity set are

used as penalization terms. The conductivity coefficient is assumed to be known in a narrow region near the

domain boundary. With presence of 1% of noise in the data, both the material interface and coefficient val-

ues can be accurately recovered. Besides numerical results, theoretical analysis of the numerical scheme is

also given in [31]. See also [1,13,14,32] for some related studies for the same problem.

The level set idea, first proposed in [30], is known to be a powerful and versatile tool to model evolution

of interfaces. The idea has also been used successfully in the context of inverse problem. The pioneering

work of Osher and Santosa [29] uses the level set method for an inverse problem associated with shape opti-
mization for the eigenvalues of the Laplace equation. In [17], the idea has been employed to solve an inverse

conductivity problem. Assuming known conductivity values, the unknown conductivity interface can be

solved by using values of Neumann data as well as values of solution in a thin layer along the boundary

of a domain. In [8], the level set idea has been applied to solve elliptic inverse problems, where the unknown

discontinuous coefficient has to be solved without the knowledge of both the values of the coefficient and
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interfaces between the regions having different coefficient values. By using the value of solution or the gra-

dient of solution of the forward problem in the domain, the coefficient can be accurately identified by uti-

lizing the level set method. In [15], level set method has also been applied to solve an electromagnetic

tomography problem with the model given by the Helmholtz equation. With known conductivity values,

the interfaces of different materials are determined by using level set representation of curves. The work
by Ameur et al. [2] treats a geometrical inverse problem using the level set methods. They try to recover

a crack inside an elastic body from just one boundary measurement. See [5–7,27] for level set methods

for other inverse problems.

In this paper, we will propose a method based on the level set idea to solve the inverse problem arising

from electrical impedance tomography. We will consider the case where the electrical conductivity q(x) is a

piecewise constant function, with the possibility that the conductivity values are unknown. Following Chan

and Tai [8,9] and Vese and Chan [39], we will represent the conductivity by using level set functions. With

the representation of q(x), we then solve the inverse problem by minimizing the L2-norm of the difference
between the potential due to the applied current and the measured potential on oX. Since the minimization

problem is highly ill-posed, we introduce a regularization using the total variation norm of q(x) as in [9].

The choice of the regularization term allows the method to recover a sharp interface between different re-

gions having different conductivity values. Moreover, it has been shown numerically that our method can

tolerate relatively higher level of noise in the data.

This paper is organized as follows. In Section 2, we will give a brief overview of the level set method. We

will present the use of level set functions to represent a piecewise constant function. Then, we will derive our

method for solving the tomography problem by minimizing the L2-error with total variation regularization.
In Section 3, a series of numerical experiments is presented. We will show numerically that our method is

able to recover simultaneously the unknown interface and the coefficient values. Also, we will discuss the

sensitivity of our method with respect to number of observations, noise level and regularization parameter.
2. Numerical solutions to the inverse problem

For simplicity of presentation, we assume X contains two different materials with piecewise constant
conductivities q1 and q2, where q1 and q2 are two positive real numbers. Let Xi be the region containing

material with conductivity qi (i = 1,2) and C be the interface between the two regions. Then, q(x) can be

represented as
qðxÞ ¼ q1Hð/ðxÞÞ þ q2ð1� Hð/ðxÞÞÞ in X; ð3Þ

where H(x) is the Heaviside function, namely
HðxÞ ¼ 1 for x P 0; HðxÞ ¼ 0 for x < 0;
and /(x) is the level set function satisfying
X1 ¼ fx 2 Xj/ðxÞ > 0g;
X2 ¼ fx 2 Xj/ðxÞ < 0g;
C ¼ fx 2 Xj/ðxÞ ¼ 0g:
To determine the material interface C, it suffices to determine the level set function /. It is clear that many

different level set functions can achieve the above requirement. We will employ a signed distance function

defined by
/ðxÞ ¼
dðx;CÞ if x 2 X1;

�dðx;CÞ if x 2 X2:

�
ð4Þ
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It is clear that / satisfies the partial differential equation
jr/j ¼ 1 in X: ð5Þ

However, / is not the only solution to (5) in the sense of distribution. The unique solution to (5) is defined
in the sense of viscosity solution. Let ~/ be any level set function that is positive inside X1 and negative out-

side X1. Then, the viscosity solution to (5) is defined as the unique steady state solution to
od
ot

þ signðdÞðjrdj � 1Þ ¼ 0; dðx; 0Þ ¼ ~/: ð6Þ
See [28] for details. We shall mention that there are some variants of the level set methods which could

avoid the use of the distance function and the Heaviside function H, see [22,36] for some details. Applying

idea from Vese and Chan [39], we can extend the level set function representation of q(x) in (3) in the case

where the domain X contains more than two materials. Hence, our method, which will be derived for two

unknown conductivity values, can be easily generalized to recover more than two conductivity values and

their interfaces. The number of unknown conductivity values need not be specified, only the upper bound is

needed. The redundant regions will disappear or merge with other regions during the iterative process. See

also [8].
Let N be the number of measurements made. For 1 6 i 6 N, we let fi(x) be a given function representing

a known applied current density on oX and mi(x) be the corresponding measurement of the electrical po-

tential on oX. We also denote by ui(x,q) the theoretical value of the electrical potential on X due to fi(x),

where we emphasis the dependence of ui on q(x). Since the solution to the Neumann problem (1), (2) is not

unique, we impose the following constraint on ui(x,q):
Z
oX

uiðx; qÞ dx ¼ 0;
which means a ground state potential is specified. In order to find q1, q2, and the location of C, we minimize

the following functional:
F ð/; q1; q2Þ ¼
1

2

XN
i¼1

Z
oX

juiðs; qÞ � miðsÞj2 ds:
Since the minimization problem is highly ill-posed, we will introduce a regularization term in the functional.

Our choice is the total variation regularization, namely, we will find the minimum of the following

functional:
F ð/; q1; q2Þ ¼
1

2

XN
i¼1

Z
oX

juiðs; qÞ � miðsÞj2 dsþ b
Z
X
jrqj dx; ð7Þ
where b is a regularization parameter to be chosen and
Z
X
jrqj dx
is the total variational norm of q (cf. [42]). The key of our numerical scheme is that the choice of total

variation regularization ensures that both the jumps of coefficient values and the lengths of interfaces

are controlled. See also [40]. This is different from the standard level set technique, which only controls

the length.
We notice that F defined in (7) is a functional of q which again is a function of /, q1 and q2. So, in

order to compute the gradient of F(/,q1,q2), we need to evaluate the gradient of F with respect to q as

well as the differentials of q with respect to /, q1 and q2, respectively. The gradient of F with respect to

q is given by
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dF
dq

¼ �
XN
i¼1

rui � rzi � br � rq
jrqj

� �
; ð8Þ
where zi (i = 1,2, . . . ,N) is the solution to the following problem
�r � ðqrziÞ ¼ 0 in X;

q
ozi
on

¼ ui � mi on oX;
with the constraint
Z
oX

ziðxÞ dx ¼ 0:
The first term on the right-hand side of (8) is the gradient with respect to q of the first term on the right-

hand side of (7). The second term on the right-hand side of (8) is the gradient with respect to q of the second

term on the right-hand side of (7). Using variational arguments, it can be shown that the following equality

must be valid on the boundary if (/, q1, q2) is a minimizer of (7)
bjrqj�1 oq
on

¼ 0 on oX:
By the chain rule, we have (cf. [8, p. 45])
dF
d/

¼ dF
dq

dq
d/

¼ dF
dq

ðq1 � q2Þdð/Þ; ð9Þ

dF
dq1

¼
Z
X

dF
dq

dq
dq1

dx ¼
Z
X

dF
dq

Hð/Þ dx: ð10Þ

dF
dq2

¼
Z
X

dF
dq

dq
dq2

dx ¼
Z
X

dF
dq

ð1� Hð/ÞÞ dx; ð11Þ
where d is the Dirac delta function.

We will use the method of gradient descent to solve the minimization problem. More precisely, we will

consider the following iterative scheme for /, q1 and q2:
/kþ1 ¼ /k � ak
dF
d/

ð/k; qk1; q
k
2Þ; ð12Þ

qkþ1
j ¼ qkj � cjk

dF
dqj

ð/kþ1; qk1; q
k
2Þ; j ¼ 1; 2: ð13Þ
The step sizes ak > 0 and cki > 0 can be fixed during all the iterations or be obtained by line search.
However, in all of the following numerical tests, we use line search for ak and cjk (j = 1,2). Precautions have

to be taken when conducting numerical calculations with the delta function d(/) and the Heaviside function

H(/). They are, in a more precise sense, limits of C1 functions. One way to tackle this problem is to replace

the delta function d(/) and the Heaviside function H(/) by using the following smooth approximations:
d�ð/Þ ¼
�

pð/2 þ �2Þ
; ð14Þ

H �ð/Þ ¼
1

p
tan�1 /

�

� �
þ 1

2
; ð15Þ
with � > 0 chosen to be the order of the mesh size. See [8,39].
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During the iteration procedure according to (12) for the function /, the new iterate may not be a signed

distance function anymore. In this reconstruction algorithm (12), (13), only the sign of the function / is

important and the value of the function / is irrelevant. So, as the iteration for / proceed, we would

like to replace the new iterate by a signed distance function so that it has the same sign as the corresponding

iterate. This can be done by solving (6). In all of the experiment below, this replacement is done when the
function / is changed by 10% measured in relative L2-norm.
3. Numerical tests

This section aims at showing the usefulness of the numerical scheme derived in previous section. A series

of numerical experiments were carried out in order to confirm numerically that the scheme is able to recover

simultaneously the material interface and conductivity coefficient values in some situations which appear
often in practice.

For ease of exposition, we set X = [0,1]2. We will triangulate the domain by dividing it into uniform

squares with side length h. Each square is then divided into two triangles by cutting along one of its diag-

onals. As a result, we have a set of triangles triangulating the domain X. In all of the following examples, we

take h = 1/16. Furthermore, we will always use dash lines to represent the numerical computed interface

while use solid lines to represent the true interface.

The data for the potential u on the boundary are generated in the following manner. We set u equals 1 on

one of the four sides of the rectangular domain X and 0 elsewhere. So, we have a set of four data in this
form. Next, we divide each side of X into two parts. Then, we set u equal 1 on one part and 0 on the other

part, while setting u equal 0 on the other three sides. So, we have a set of eight data in this form. Next, we

divide each side into four parts and set u equals one on one part and zero on the other three parts. Then, we

get a set of 16 data in this form. Hence, by continuing in this manner, we have a set of 4, 12, 28 and 60 data,

respectively.

We will also add some uniform noise to the data and the data are generated on a finer mesh using the

true solutions. We use the relative error in the L2-norm on the boundary to measure the noise level in the

data.
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Fig. 1. Left picture shows the initial guess. Right picture shows the numerical result after 200 iterations.
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The regularization parameter is chosen experimentally. A few values are used to solve a particular prob-

lem. Then we choose the one that gives the best numerical result. We remark here that an even better way of

choosing the regularization parameter is to employ the discrepancy principle [41].

3.1. Simultaneous reconstruction

In this example, we use 60 measurement data with 0.05% noise. The regularization parameter b is chosen

to be 10�7. The true conductivity value is 1 inside the region enclosed by the solid line and is 10 outside. We

will fix q2 = 10 during the iterations. We pick a circle, shown in dash line in the left picture in Fig. 1, as our

initial guess for the material interface. Also, we pick an initial guess for the conductivity coefficient to be 1.1

inside. The numerical result after 200 iterations is shown in Fig. 1. At convergence, the conductivity q1 = 1.3

inside.
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Fig. 2. Left picture shows the initial guess. Right picture shows the numerical result after 200 iterations.
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Fig. 3. Left picture shows the initial guess. Right picture shows the numerical result after 200 iterations.
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We see that, in the presence of 0.05% noise in the measurement data, our numerical scheme can almost

recover the shape of the unknown interface. Furthermore, we see that we can recover the geometry of the

unknown interface without knowing much about it, as can be seen from our choice of the initial guess

which contains no information about the true interface.

Next, we will consider the same example as above but with different noise level. We add, in this case,
0.1% noise in the data. We also change the regularization parameter to 10�6 due to the larger noise.

Fig. 2 shows the numerical result after 200 iterations. The recovered value of the conductivity coefficient

inside the region is 1.8.

We next consider an example with a different shape. We again use 60 measurements, 0.1% noise in the

data and b = 10�6. The true conductivity value is again 1 inside the region enclosed by the solid line and is

10 outside. The initial guess for the value inside the region is 1.1. Fig. 3 shows the initial guess for the inter-

face and the numerical solution of the interface at 200 iterations.

In this experiment, the recovered value of the conductivity inside the region is 1.3. From this numerical
test, we see that our numerical algorithm can accurately recover the material interface even in the presence

of 0.1% noise in the data.
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Fig. 4. Results with no noise in the data. Up: initial guess. Left: numerical solution after 2000 iterations with computed q = 2.129.

Right: numerical solution after 50,000 iterations with computed q = 1.789.
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We next consider an example with an object with a more complicated geometry. We will first test the

algorithm with no noise in the given data. We take 60 measurements and set the regularization parameter

b to be 10�12. We decrease the mesh size to h = 1/32. The true value of the conductivity coefficient is 1 inside

the region and is 10 outside the region. The initial guess for the value inside the region is 1.1. Fig. 4 shows

the initial guess of the interface and the numerical solution after 2000 and 50,000 iterations. From the re-
sults in Fig. 4, we see that relatively few iterations are needed to capture the material interface with good

accuracy. However, more iterations are needed in order to get better accuracy of the recovered value of the

conductivity coefficient as a result of the ill-posedness of the problem. Fig. 5 shows numerical results of the

same example with 0.01% noise in the data.

In the following, we present the results of an example with the mesh size decreased to h = 1/64. From

Fig. 6, we see that the concave part of the object can be more accurately recovered. Moreover, the recovered

value of the conductivity coefficient is more accurate.

In the last example of this section, we present a result of an example with the initial guess of the value of
the conductivity coefficient inside the region to be q = 3 instead of q = 1.1. We will set the mesh size h = 1/32
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Fig. 5. Results with 0.01% noise in the data. Up: initial guess. Left: numerical solution after 2000 iterations with computed q = 2.092.

Right: numerical solution after 10,000 iterations with computed q = 1.941.
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in this case. From Fig. 7, we see that the material interface can be recovered even though the initial value of

q is far away from the true value. In addition, the recovered value of q is 2.273.

3.2. Sensitivity on number of observations

In this section, we will see the effect of the number of observations on the accuracy of the numerical solu-

tion. Here, we take the regularization parameter b to be 10�8 and we also add 1% noise in the data. To see

the effect, we perform four different numerical calculations of a known interface by using 4, 12, 28 and 60

measurements. Fig. 8 shows an initial guess for our method. The numerical results are shown in Fig. 9. The

upper left, upper right, lower left and lower right figures show results with 4, 12, 28 and 60 measurements,

respectively. From the numerical results above, we see that, as the number of measurements increases, we

have a better accuracy of the unknown interface. When the number of measurement is 60, we almost re-
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
iteration =0

Computed and exact φ, iteration =0 

iteration =10000

Computed and exact φ, iteration =10000 

Fig. 6. Result with 0.01% noise in the data. Left: initial guess. Right: numerical result after 10,000 iterations with computed q = 1.599.
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cover the exact interface. In addition, even with a very small number of measurement (e.g., 4) we can still

roughly get the shape of the unknown interface. From this numerical experiment, we see that the concave

portion of the unknown object is more difficult to be recovered than other part where the object is convex.

3.3. Sensitivity on noise level

In this section, we will see the effect of the noise on the computational results. We will test our algorithm

against different noise levels. Here, we fix the number of measurements to be 60. We will perform four

numerical tests with noise ranging from 1% to 4%. The true interface in this case is a square sitting in

the middle of the domain X. We pick an initial guess for the numerical scheme to be a circle sitting in

the middle of the domain (see Fig. 10). In Fig. 11, we show the numerically computed interfaces with dif-

ferent noise levels. The upper left, upper right, lower left and lower right figures show the numerically com-

puted interface with 1%, 2%, 3% and 4% of noise in the data, respectively. The corresponding regularization
parameter b are 10�13, 10�10, 2 · 10�6 and 5 · 10�5, respectively. We see that our numerical algorithm can,

at least, tolerate noise level up to 4%. Also, at this noise level, our algorithm can produce quite accurate

result.

3.4. Sensitivity on regularization parameter

In this section, we will demonstrate the effect of the choice of the regularization parameter b. We fix the

number of measurements to be 60. The true interface is a circle sitting in the middle of the domain (see Fig.
12). The initial guess is chosen to be a circle with the same center as that of the true interface and smaller

radius.

We show the results with different regularization parameters in Fig. 13. The upper left, upper right, lower

left and lower right figures show the results with the regularization parameter is chosen to be 10�4, 10�5,

10�6 and 10�7, respectively. The corresponding noise levels in the data are 7%, 2%, 1% and 0.5%, respec-

tively. From this numerical experiment, we see that the choice of the regularization parameter is crucial to

the success of our numerical scheme. The general principle is the higher the noise level, the greater the reg-

ularization parameter should be used. In this particular experiment, when the regularization parameter is
chosen to be 10�4, the numerical scheme can recover the true interface with noise level up to 7%. On the
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Fig. 8. A circle is chosen to be an initial guess.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 iteration =0

Computed and exact φ, iteration =0 
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Fig. 9. The upper left, upper right, lower left and lower right figures show results with 4, 12, 28 and 60 measurements.
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other hand, when the regularization parameter is chosen to be 10�7, the numerical scheme can only recover

the true interface with noise level up to 0.5%. In addition, as the value of the regularization parameter in-

creases, the numerical scheme can tolerate higher level of noise in the data.

3.5. Comment on computational efficiency

The problem of identifying both the material interface and the value of the coefficient is highly ill-posed.

As shown in the numerical examples from Figs. 4 and 5, we see that relatively few iterations are needed to

capture the material interface with good accuracy. However, more iterations are needed in order to get bet-

ter accuracy of the recovered value of the conductivity coefficient as a result of the ill-posedness of the

problem.

There are many ways to improve the speed. All the equations for the forward and the adjoint problems

have the same matrices with different right-hand sides. Moreover, very good initial values are available for
these problems during the iterations. Thus, some fast methods can be used to solve the forward and adjoint
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Fig. 11. The upper left, upper right, lower left and lower right figures show results with 1%, 2%, 3% and 4% noise and regularization

parameter 10�13, 10�10, 2 · 10�6 and 5 · 10�5, respectively.
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Fig. 13. The upper left, upper right, lower left and lower right figures show results with the regularization parameter chosen to be 10�4,

10�5, 10�6 and 10�7 and noise level 7%, 2%, 1% and 0.5%, respectively.
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Fig. 12. A circle is chosen to be an initial guess.
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problems. The gradient decent method used here is very slow, but rather stable. We could combine the gra-

dient decent method with the Newton method and that will reduce the iteration number a lot. Other com-

putationally more efficient methods are certainly possible but are beyond the scope of our current paper.
4. Conclusion

For electrical impedance tomography, it is sometimes more important to recover the shape of the do-

mains containing different materials than to recover the values for the materials. Level set methods are nat-

ural choices for this kind of applications. In this work, we have demonstrated that level set methods can

produce rather good results in identifying the sharp interfaces in the presence of noise in the observation

data. In order to use this approach for practical problems, we need to improve the efficiency of the algo-

rithms. More efficient level set minimization algorithms shall be tested [36]. An efficient algorithm for solv-
ing the forward problems would also improve a lot of the numerical performances of the proposed

algorithms.
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